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Abstract: One of the leading causes of morbidity and mortality worldwide is coronary artery disease,
a condition characterized by the narrowing of the artery due to plaque deposits. The standard of
care for treating this disease is the introduction of a stent at the lesion site. This life-saving tubular
device ensures vessel support, keeping the blood-flow path open so that the cardiac muscle receives
its vital nutrients and oxygen supply. Several generations of stents have been iteratively developed
towards improving patient outcomes and diminishing adverse side effects following the implanting
procedure. Moving from bare-metal stents to drug-eluting stents, and recently reaching bioresorbable
stents, this research field is under continuous development. To keep up with how stent technology
has advanced in the past few decades, this paper reviews the evolution of these devices, focusing on
how they can be further optimized towards creating an ideal vascular scaffold.

Keywords: cardiovascular stents; stent platform materials; stent optimization; surface functionalization

1. Introduction

Cardiovascular diseases have become an increasingly serious threat to human life; they
are the leading cause of hospitalization and death globally [1–5]. Coronary artery disease
(CAD), in particular, is the third most common cause of mortality worldwide, imposing a
major health and economic burden on most developed nations [6–11]. CAD is characterized
by the narrowing of the artery due to plaque deposits beneath the endothelium. Cells, fats,
calcium, cellular debris, and other substances may accumulate in these deposits, starting
a cascade of events—diminished blood vessel artery lumen, restricted blood flow, and
inadequate nutrients and oxygen supply to the cardiac muscle—that can eventually cause
myocardial infarction or transient cerebral ischemic attacks and stroke [12–17].

To restore normal blood flow and avoid the other critical consequences of vessel
narrowing, special devices called stents can be inserted into the affected vessel using
fluoroscopic and/or endoscopic guidance [13,14]. This procedure is minimally invasive
compared to open cardiac surgery and is associated with lower mortality and morbidity in
the long term and better outcomes in critically ill patients in the short term [15].

Therefore, cardiovascular stents are life-saving devices, rightfully included in the top
ten medical breakthroughs of our century [18]. From a constructive point of view, stents
are small, complex, cylindrically shaped hollow structures formed into a sequential ring
construction comprising a series of struts and connecting elements [13,15,19]. The way that
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stents work relies on their design, which helps keep the path of human arteries through
the body open [20,21].

Initially, bare-metal stents were used as a bail-out intervention scenario in the case
of abrupt and threatened vessel closure with plain old balloon angioplasty. However, the
reported positive outcomes encouraged stent placement to be adopted as the standard of
care in percutaneous coronary intervention (PCI) [22]. Regardless of the history of clinical
safety and efficacy, the usage of the first generation of these devices was frequently limited
by in-stent restenosis, resulting in the failure of the existing stent or a reintervention using
another stent [20].

Years later, as a solution to these issues, the deployment of drug-eluting stents (DESs)
became an integral treatment option for patients with coronary artery disease [23]. Coro-
nary DESs not only revolutionized PCI treatment but have also been approved as the
current standard as they significantly reduce restenosis of vascular stents and mitigate the
need for repeat revascularizations [20,24,25].

The decades of research and clinical trials in this field have resulted in various stent
designs involving diverse materials, from which doctors can choose the appropriate device
depending on the local deposition of plaque and fatty substances and the potential side
effects [15,18].

This paper thus aims to review past and currently available stents and shed some
light on how these devices can be further optimized towards ideal in vivo behavior.

2. Evolution of Cardiovascular Stents

The rapid technological advancements that have taken place over the past 40 years
have greatly affected PCI evolution [26]. Interventional cardiology has undoubtedly
evolved since the first percutaneous transluminal coronary angioplasty. This evolution
began with a balloon catheter mounted on a fixed wire and progressed into bare-metal
stents (BMSs), first-generation DESs, and second- and third-generation biodegradable
polymer-based DESs, culminating in the introduction of bioresorbable vascular scaffolds
(BVSs), which are currently under development [7,17] (Figure 1).
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Stents s were found to have versatile medical applications (Figure 2) in a wide variety
of clinical emergencies after their introduction by Charles Theodore Dotter in the 1960s
in the US, but their potential utilization in CAD had not yet been discovered [20,29]. In
the late 1970s, two intervention techniques were introduced: coronary angiography and
balloon angioplasty. In the beginning, plain balloon angioplasty without stent implantation
showed high rates of arterial recoil and vessel dissection [6].
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2.1. Bare-Metal Stents

The first coronary stent was implanted in 1986 and became the inception point for
the first generation of BMSs [6,7]. These devices were usually fabricated from corrosion-
resistant materials, such as stainless steel (316L), cobalt-chromium (Co-Cr), platinum-iridium
(Pt-Ir) alloys, tantalum (Ta) or nitinol (Ni-Ti), and were permanently implanted [30–33].

A common challenge faced when designing stents is the recoil phenomenon, which
refers to the percent decrease of stent diameter between its expanded and relaxed forms [13].
To avoid significant changes in their dimensions, stent materials must have adequate
mechanical properties (Table 1). A common manufacturing technique for all materials is
laser cutting, but nitinol has also been processed into stents using thin-film technology
followed by a photoetching step [34–36].

Table 1. Mechanical properties of the most common stent metals and alloys.

Stent Material Young’s Modulus
(GPa)

Ultimate Tensile
Strength (MPa)

Equivalent Von-Mises
Stress (MPa)

Elongation at
Break (%) References

Iron 211 270 - 40 [33,37–39]
Stainless steel 193 595 231.14 40 [15,33]

Tantalum 186 285 514.70 - [15,40]
Nitinol 45–50 1200 436.12 ~20 [15,41]

Cobalt-chromium L-605 243 1020 536.20 50 [15,42]
Cobalt-chromium MP35 N 233 930 529.82 45 [15,42]

The above-listed materials have suitable properties for providing the lesion site’s
required support while preserving device shape and integrity, but their non-degradability
leads to a series of post-intervention complications [32]. Some of the recorded issues include:
(sub)acute occlusion and neointimal hyperplasia resulting in the in-stent recurrence of
stenosis (in-stent restenosis) due to both arterial damage and stent implantation, late-stage
thrombosis, chronic inflammatory response, and the necessity of keeping the stent as a
foreign body throughout the entire life [31,32,43,44].

Stainless steel is a resistant, hard, non-corrosive material, yet its limited biocompati-
bility represents a major drawback in terms of thrombosis formation. On the other hand,
nitinol alloy has better biocompatibility in the short term but, in time, nickel can migrate
from the material and produce immune response issues. Tantalum has very good mechani-
cal properties and it is biologically inert. This metal lacks ferromagnetism, is very stable
and resistant, and its oxide surface layer developed after implantation is biocompatible.
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However, no difference has been noticed in the thrombosis rate when comparing this
material with stainless steel [14].

To prevent the cascade of life-threatening events, another generation of stents had to
be developed.

2.2. Drug-Eluting Stents

An important turning point for interventional cardiology was reached in 2002 when
the first DESs were introduced into the market. The structure of the first generation of
DESs was based on a stainless-steel platform coated with a drug-eluting durable poly-
mer [6,23,45] (Figure 3). Such devices allow localized elution over the course of a month of
neointimal inhibiting drugs, such as sirolimus and paclitaxel, which have antiproliferative
effects [46–49].
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DESs were mainly adopted as a solution for in-stent restenosis, a major problem
associated with the stenting procedure [52]. Their proven long-term safety and efficacy
are also reflected in the improved subsequent revascularization rates and reduced risk of
thrombosis compared to BMSs [53–56].

Nonetheless, the first generation of DESs required longer dual antiplatelet therapy
(DAPT) than BMSs, which can be accompanied by an increase in bleeding [55–57]. Specifi-
cally, the risk of stent thrombosis with BMSs is the highest within the first 14 to 30 days;
hence, DAPT is routinely recommended for at least one month, while a period of at least 6
to 12 months is necessary after DES implantation to avoid late stent thrombosis [58–60].
Moreover, randomized and observational studies have reported a steady increase in the
cumulative incidence of late and very late stent thrombosis. In contrast, pathogenic studies
have shown delayed arterial healing [61,62], mainly due to the long-term inflammation of
the peri-stent tissue caused by the durable polymers used as drug carriers [45].

To overcome these limitations, the second generation of DESs was developed starting
from 2008. These new devices presented improvements in strut thickness, deliverability,
and flexibility. [6]. Efforts were made to change all three components (platform, coating, and
drug) of previous-generation stents [49]. Other materials were proposed for the metallic
platform, namely cobalt-chromium and platinum-chromium alloys, as they allowed a
reduction in the strut thickness [6]. The extra benefits that the new platform alloys brought
were superior radial force and better radiopacity, with thinner strut formulations than the
316L stainless steel used in previous stent generations [12,23,63].

Another important component of DESs is the stent coating, for which biodegradable
polymers have been considered as drug-eluting layers [45]. The coating must provide struc-
tural integrity, consistent dosing, and controlled release kinetics, as it serves as the interface
between the stent and the vascular tissue. Thus, the biocompatibility of the polymers used
for coating stents is of vital importance. As the polymer coating also acts as the eluting
drug’s reservoir, it must be non-thrombogenic, non-inflammatory, non-toxic to cells, and
should encourage arterial healing by re-endothelialization [12,19,21,23,63]. In this respect,
the adequate features of phosphorylcholine, polylactic acid, poly(vinylidencefluoride-co-
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hexafluoropropenen), and polyvinylpyrrolidone have attracted interest for stent coatings,
mitigating inflammation and thrombosis risk [6,24,64]. Furthermore, there are many
available techniques for fabricating polymer-coating stents that can be chosen from (e.g.,
dip-coating, electrospinning, spray coating, hot melt coating), depending upon the consti-
tutional complexity of the stent platforms and their uncharacterized properties as medical
devices [20,65–67].

Regarding the incorporated drugs, new substances have been proposed in these stents,
such as zotarolimus, everolimus, and novolimus [6,68–72]. Through their diffusion into
the vessel wall, these compounds lead to good endothelial coverage, inhibition of vascular
restenosis, and suppression of transplant rejection [20,22,52,63]. Moreover, drug diffusivity
is highly dependent on the size and charge of the drug. Specifically, high molecular weight
anionic substances have a lower diffusivity than neutral or cationic low molecular weight
compounds [73,74]. Hence, these characteristics must be considered when choosing which
drug is to be included in the coating.

However, the long-term durability of DESs is still not optimal, posing limitations in
terms of adaptive remodeling due to vessel caging by metal prosthesis, abnormal coronary
vasomotion, and undefined interactions of antiproliferative drugs [75–77]. Therefore, more
recent research has shifted towards developing non-permanent devices.

2.3. Bioresorbable Stents

Generally, stents are needed temporarily (until healing and re-endothelialization
are obtained) for their short-term benefits, while in the long term they tend to create
severe complications associated with leftover metal. To diminish adverse effects, like
chronic inflammation, restenosis, late-stage thrombosis, and vessel size mismatch, a new
generation of devices (described in the literature as bioresorbable stents, biodegradable
stents, or bioresorbable vascular scaffolds) is currently being developed [25,30,32,75,78–81].

The use of bioresorbable stents is considered a revolution in interventional cardiol-
ogy [82]. Such devices are fabricated from materials that provide transient support and
progressively degrade, being dissolved or absorbed in the body after the remodeling pro-
cess [13,30,31,79,83]. It is in this regard that biocompatible, biodegradable polymers and
metallic materials have attracted increased attention [32,84] (Table 2). Manufacturing meth-
ods include, but are not limited to, photochemical etching [85,86], helical coiling [87,88],
braiding techniques [89–91], fluid dispensing [92], three-dimensional (3D) printing [93,94],
electrospinning [95,96], hot extrusion [97], and selective laser melting [98].

Table 2. Important properties of several biodegradable stent materials.

Stent Material Young’s Modulus
(GPa)

Tensile Strength
(MPa)

Elongation at
Break (%)

Degradation
(Months) References

PLA 2–4 65 2–6 18–30 [99,100]
PDLLA 1–3.5 40 1–2 3–4 [99]
PLLA 2–4 60–70 2–6 >24 [99]
PGA 6–7 90–110 1–2 4–6 [99]

PDLGA (50/50) 1–4.3 45 1–4 1–2 [99]
PLGA (82/12) 3.3–3.5 65 2–6 12–18 [99]

PCL 0.34–0.36 23 >4000 24–36 [99]
PLA/PCL (70/30) 0.02–0.04 2–4.5 >100 12–24 [99]

PC 2–2.4 55–75 80–150 >14 [99]
AE21 45 - - 2–3 [78,101]
AE42 45 237 8–10 - [78]
WE43 40–50 220–330 2–20 3–12 [99]
AZ31 45 235 7–21 <4 [78]

Abbreviations: PLA—polylactic acid; PDLLA—poly-DL-lactic acid; PLLA—poly-L-lactic acid; PGA—polyglycolide; PDLGA—poly-
DL-lactide-co-glycolide; PLGA—poly-lactic-co-glycolide; PCL—polycaprolactone; PLA/PCL—polylactic acid/polycaprolactone; PC—
polycarbonates; AE21—magnesium alloy containing ~2% aluminum and ~1% rare earth metals; AE42—magnesium alloy containing ~4%
aluminum and ~2% rare earth metals; WE43—magnesium alloy containing 4.2% yttrium, 2.4% neodymium, 0.6% cerium/lanthanum, and
0.5% zirconium; AZ31—magnesium alloy containing ~3% aluminum and ~1% zinc.
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Out of these materials, PLLA was used for the first European Medicines Agency-
approved BVS [27] and is the most typical biocompatible polymer used for current biore-
sorbable stents [31,84]. PLA is another biodegradable polymer with satisfactory process-
ing characteristics and mechanical properties and can be employed either alone or in
polymer blends to fabricate new generation stents [102]. Other polymers that can be
resorbed in the organism (Figure 4) within several months of stenting are PLGA, PGA,
PCL, polyorthoesters, phosphorylcholine, fibrin, hyaluronic acid, and polyethylene ox-
ide/polybutylene terephthalate [31].
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However, as can been seen in Table 2, biodegradable metals are endowed with better
mechanical properties than polymeric materials. Biodegradable metallic stents are con-
sidered to be a revolutionary alternative to permanent stents [107]. Magnesium alloys, in
particular, offer superior elastic moduli and tensile strengths while maintaining a uniform
degradation over a similar or shorter time [108]. Another convenient property of mag-
nesium (Mg) alloys is their electronegative charge during degradation, which provides
antithrombotic potential [101]. However, bare Mg alloy stents tend to corrode too fast,
requiring polymer coatings to slow down their degradation process and sustain the drug-
delivery capability [109] (Figure 5). Other metal-based materials for new-generation stents
are iron and zinc alloys. They have been proven to be well-tolerated in vivo, having similar
mechanical properties to non-degradable metals [31,32,110].

By reducing the contact time between the stent surface and the blood flow, bioab-
sorbable stents provide positive outward remodeling after biodegradation, an improved
possibility of later surgical revascularization, facilitation of secondary re-intervention, and
a lower risk of late stent thrombosis [19,25,80,111].
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Nonetheless, several side effects have also been reported from BVSs. Their recorded
drawbacks include poor healing, platelet deposition, poor deliverability, rheological dis-
turbances, and increased scaffold fracture risk [19]. Therefore, there is still room for
improvement, and ongoing research must address all these issues before being able to
provide an ideal stent.

It is possible to create better solutions for CAD treatment in the future only by knowing
and understanding the characteristics and outcomes of already available stents. In this
respect, a summary of observations from clinical trials regarding several stent devices is
presented in Table 3.

Table 3. Characteristics of developed and under-development stents.

Device
Stent Specifications

Observations ReferencesPlatform
Material

Strut Thickness
(µm)

Coating
Material Drug

Cypher Stainless
steel 140 Parylene C Sirolimus

Drug-eluting time: 80% elutes in
the first 30 days, while the
remainder is released by the end
of 90 days
Outcomes at 1 year (percent
from the total number of
patients in the trial):

- target vessel
re-vascularization: 8.1%

- stent thrombosis: 1.2%
- cardiac mortality: 1.4%

[31,112,113]
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Table 3. Cont.

Device
Stent Specifications

Observations ReferencesPlatform
Material

Strut Thickness
(µm)

Coating
Material Drug

Taxus Stainless
steel 132

Polystyrene-
b-

isobutylene-
b-styrene
(translute)
polymer

Paclitaxel

Drug-eluting time: elutes over
90 days
Outcomes at 1 year (percent
from the total number of
patients in the trial):

- target vessel
re-vascularization: 7%

- stent thrombosis: 0.7%
- cardiac mortality: 3.1%

[31,112,113]

Axxion Stainless
steel 117 - Paclitaxel

Drug-eluting time: 40–50% in
the first week, while the
remainder is released by the end
of 4 weeks

[31,114]

Achieve Stainless
steel - Paclitaxel Drug-eluting time: 28% within

4 days; 69% within 2 weeks [31]

Amazonia
PAX

Cobalt-
chromium

L-605
73 - Paclitaxel

Drug-eluting time: 60% within
2 days, while the remainder is
released by the end of 7 weeks

[31,114]

Cre8
Cobalt-

chromium
L-605

70–80 - Amphilimus
Drug-eluting time: 50% on the
first day, while the remainder is
released by the end of 3 weeks

[31,114]

BioFreedom Stainless
steel 119 - Biolimus A9

Drug-eluting time: 98% within
4 weeks
Outcomes at 1 year (percent
from the total number of
patients in the trial):

- target vessel
re-vascularization: 5.1%

- stent thrombosis: 0%
- cardiac mortality: 1.8%

[31,114,115]

JANUS Stainless
steel Carbofilm Tacrolimus

Drug-eluting time: 50% within
the first 4 weeks
Outcomes at 22 months (percent
from the total number of
patients in the trial):

- target vessel
re-vascularization: 32.3%

- cardiac mortality: 5.5%
- intraprocedural stent

thrombosis: 2.1%

[31,116]

NANO + Stainless
steel 90 - Sirolimus Drug-eluting time: 85% during

the first 4 weeks [31,114]

BioMatri
× Flex

Stainless
steel 120 PLLA Biolimus A9 Polymer coating degradation: 6

to 9 months [113]

Endeavor
Cobalt-

chromium
MP35 N

91 Phosphory-
lcholine Zotarolimus Drug-eluting time: 80% during

the first 10 days [31,117,118]
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Table 3. Cont.

Device
Stent Specifications

Observations ReferencesPlatform
Material

Strut Thickness
(µm)

Coating
Material Drug

Orsiro
Cobalt-

chromium
alloy

60

PLLA with
silicon
carbide

layer

Sirolimus

Polymer coating degradation:
12 months
Outcomes at 1 year (percent
from the total number of
patients in the trial):

- target vessel
re-vascularization: 3.6%

- cardiac mortality: 0.8%

[113,119]

Synergy Platinum-
chromium 74 PLGA Everolimus Polymer coating degradation:

3 months [113]

Promus
Element

Platinum-
chromium

alloy
81

Permanent
fluorinated

polymer
Everolimus

Outcomes at 9 months (from
total number of patients in the
trial):

- in-stent restenosis: 9%
- stent fracture: 2.2%

[113,117,120]

MiStent
Cobalt-

chromium
alloy

64 PLGA Sirolimus Polymer coating degradation:
3 months [113]

Mitsu
Cobalt-

chromium
alloy

40 × 80 Lipid nano-
spheres Merilimus Polymer coating degradation:

1.5 months [113]

Xience V
Cobalt-

chromium
L-605

81

Poly(vinyl-
denefluoride-

co-hexa-
fluoro-

propylene)

Everolimus

Drug-eluting time: 80% during
first 30 days
Outcomes at 1 year (percent
from the total number of
patients in the trial):

- target vessel
re-vascularization: 7.8%

- stent thrombosis: 0.2%
- cardiac mortality: 1.8%

[112,113,117]

Resolute
Integrity

Cobalt-
chromium

alloy
91 BioLinx

polymer Zotarolimus

Outcomes at 1 year (percent
from the total number of
patients in the trial):

- target vessel
re-vascularization: 4.2%

- cardiac mortality: 1.7%

[113,117,119]

Magmaris Magnesium
alloy 120–150 PLLA Sirolimus Resorption time: 12 months

Drug-eluting time: 90 days [83,121]

AMS 1.0 Magnesium
alloy 165 - - Resorption time: <4 months [113]

AMS 2.0 Magnesium
alloy 120 - - Resorption time: >4 months [113]

DREAMS
1

Magnesium
alloy 125 PLGA Paclitaxel Resorption time: 9 months [113]

DREAMS
2

Magnesium
alloy 150 PLLA Sirolimus Resorption time: 9 months [113]
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Table 3. Cont.

Device
Stent Specifications

Observations ReferencesPlatform
Material

Strut Thickness
(µm)

Coating
Material Drug

Fantom
Tyrosine

polycarbon-
ate

125 - Sirolimus

Resorption time: 36 months
Outcomes at 1 year (percent
from the total number of
patients in the trial):

- target lesion failure: 4.2%
- stent thrombosis: 0.4%

[83,122]

ReZolve

Poly-
tyrosine-
derived

polycarbon-
ate

114–228 - Sirolimus Resorption time: 48 months [113]

REVA
Gen I

Poly-
tyrosine-
derived

polycarbon-
ate

200 - Paclitaxel Resorption time: 48 months [113]

IDEAL
BioStent

Gen I

Polylactide
anhydride
mixed with
a polymer
of salycilic
acid with a
sebaic acid

linker

200
Salicylate

linked with
adipic acid

Sirolimus Resorption time: 6 to 9 months [113]

Fortitude PLLA 150
Sirolimus:
polymer

matrix (1:1)
Sirolimus

Drug-eluting time: 90% during
first 90 days
Resorption time: 10 months
Higher mechanical strength,
expansion capabilities, and
resistance to fracture than other
BVSs

[83,123]

MeRes
100 PLLA 100 PDLLA Everolimus/

Sirolimus
Resorption time: 24–36 months
Drug-eluting time: 90 days [83,124]

DESolve PLLA 150 PLLA Myolimus/
Novolimus

Resorption time: 12 to
24 months [83,113]

Magnitude PLLA <100 - Sirolimus Resorption time: 24–36 months [83,125]

ABSORB
BVS PLLA 150 PDLLA Everolimus

Resorption time: 36 months
Drug-eluting time: 90 days
Early and sustained safety in
both simple lesions of stable
patients and more complex
anatomic and clinical settings

[83,124,126,
127]

3. Stent Optimization
3.1. Features of an Ideal Stent

For a stent to be considered ideal, it should exhibit good biocompatibility, flexibility,
and deliverability, strong radial force, and good radiopacity under fluoroscopy. An ideal
device should also result in low rates of thrombogenesis, neointimal hyperplasia, and stent
thrombosis during long-term follow-up [6,128–130]. To provide effective treatment for
CAD, the stent must not interact with the active restenotic drug, must release the drug at
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the proper rate, and must be biologically inert and mechanically stable over the long term.
It should cause minimal trauma to the vessel wall, cause a minimal inflammatory reaction,
reendothelialize well, provide scaffolding for the vessel, and finally promote vessel healing
and remodeling [12,22,131–134]. The multitude of different and occasionally conflicting
requirements presented above is separated in the literature into three main categories, each
with several underlying criteria: deliverability, efficacy, and safety [23] (Figure 6).
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To meet most, if not all, of these features, stent optimization can be obtained through
several approaches, such as developing novel stent platforms (either by using new mate-
rials or creating new designs), functionalizing stent surfaces, and adopting more precise
manufacturing technologies.

3.2. Novel Platforms

Various new stent platforms are under development or have even reached the clinical
trials stage (Figure 7). Researchers have proven that stent geometry is a determining factor
in restenosis [136]. Assuming that the material and surface area remain unchanged, an
increase in the number of support struts causes a proportional increase in the neointimal
area, reducing vascular damage [137].

As strut thickness should remain as low as possible to avoid restenosis, the strength
cannot be increased by implanting bulkier devices. Therefore, one solution is to optimize
the stent pattern so that the device’s mechanical performance is enhanced through the
adjustment of strain distribution and evolution during stent deformation [101].

Another example of design improvement is the manufacture of bifurcation stents,
which can overcome the challenges faced during bifurcation procedures [19,138]. PCI
in bifurcations is associated with higher rates of periprocedural complications, in-stent
restenosis, and stent thrombosis [139]. Dedicated bifurcation stents can be chosen for this
procedure as they make it possible for the operator to perform the lesion stenting without
the need to rewire the side branch [140]. This alternative to complex two-stent strategies
has led to similar clinical outcomes as the conventional provisional stenting approach [141].
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It is not only the stent design that can be improved; new materials are also being
investigated. One metal in particular has attracted attention for these biomedical implants,
and that is zinc [110]. Despite not yet being actively used for bioresorbable stents, zinc-
based materials are considered better than magnesium alloys. They have an ideal rate of
in vivo degradation (mechanical integrity maintained for 6 months and ~50% degradation
12 months after implantation), good overall biocompatibility, and result in less proliferation
of smooth muscle cells and a good antibacterial effect [137,142,143]. Additionally, zinc is
more ductile than magnesium, facilitating the processing of these alloys into the desired
design. The range of mechanical properties attainable by Zn alloys cover the needs of
cardiovascular stents, as these materials exhibit ultimate tensile strengths varying from
87 to 399 MPa and elongation-at-break values from 0.9% to ~170% [110]. Other platform
materials tested for bioresorbable stents include iron alloys. As iron has a slow degradation
rate, combining it with other metals in adequate proportions accelerates corrosion without
sacrificing the required mechanical properties. Specifically, promising results have been
obtained with Fe-35Mn (iron alloy containing ~35% manganese), which has similar ultimate
tensile strength and yield strength to stainless steel but with a degradation rate that is three
to eight times faster [82].

Despite the more frequent use of crystalline alloys, multi-component metallic alloys
with disordered atomic distribution have recently become a topic of research for their
potential improvements to stent performance [144–148]. These new materials, generally
known as bulk metallic glasses (BMGs), present a unique combination of glassy structures
and metallic bonds that places them at the frontier of biomaterials research [149,150].
Notably, Zr-based BMGs satisfy the ideal features of stents to a great extent, exhibiting
excellent mechanical properties, high corrosion resistance, and good biocompatibility. Their
enhanced hardness and strength compared to traditional materials allow for the design
of markedly thinner stent struts, significantly diminishing restenosis risk and improving
device deliverability [144,146,147,151–153]. In particular, BMGs are being investigated for
use in self-expanding stent applications as their elastic spring-like restoration is significantly
better than that of nitinol-based devices [150]. Nonetheless, these materials lack ductility
and are susceptible to catastrophic failure at room temperature due to highly localized
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plastic deformation beyond their elastic limit [149,150]. Therefore, further in vitro and
in vivo investigations are required before implementing BMGs in clinical practices [144].

Research has also focused on the shape memory effects of several materials, which
can be highly advantageous in fabricating innovative stents. Shape memory behavior is es-
pecially useful for stent delivery, allowing for catheter size reduction and self-deployment
without auxiliary devices. This effect occurs when the material undergoes a change in its
crystal form and results in the material’s ability to recover an original shape in response
to a stimulus [154–156]. Specifically, in the case of shape-memory alloys (e.g., nitinol),
there is a reversible transformation from the austenite phase to the martensite phase,
which takes place over a specific temperature range depending on the alloy composi-
tion [157–159]. Similarly, polymeric smart materials that recover from a deformed state
to their original shape under external stimuli have also been considered [160–162]. Stents
from shape-memory polymers (e.g., poly(tert-butyl acrylate) and poly(ethylene glycol)
dimethylacrylate) could be manufactured to preserve shape storage at ambient tempera-
ture and become fully activated at body temperature [156]. Compared to shape-memory
alloys, these polymers are considered better for stent applications in terms of recoverable
strain, processability, cost effectiveness, and tunability of properties [157,163]. Besides
temperature-triggered transformations, light-responsive and chemically responsive shape
recoveries have been investigated as alternative mechanisms to reduce tissue damage from
higher heat transitions [154,164–167].

Another innovative approach is to include the drug directly into the stent platform
instead of using a polymer coating. Such devices are called drug-filled stents (DFSs)
and provide controlled elution from an internal stent lumen, avoiding the inflammation
associated with polymers from earlier generations of DESs [168,169]. Early trials were
considered successful as DFSs presented promising results, such as minimal neointimal
hyperplasia and a high degree of stent strut coverage at one month after implantation in
optical coherence tomography [49,170].

Another interesting development is the application of an antiproliferative drug as
a coating on the surface of a balloon instead of a regular stent platform. In this case,
medication is delivered locally to the tissue using prolonged 60 s inflation. Drug-coated
balloons are particularly attractive in treating de novo lesions, especially in small-vessel
disease. This method has shown similar results in treating restenosis as implanting a
second DES layer, but the much higher price limits its use [49,171–173].

3.3. Surface Modifications

A different approach for improving the biocompatibility, safety, and efficacy of stents
is to modify the surface of the implant [174]. The biological response can be improved
through surface changes in three categories: topographical modifications, physicochemical
modifications, and surface biofunctionalization [80].

Topographical modifications refer to the creation of specific nano- or micro-patterned
surfaces with the purpose of accelerating endothelial healing [80]. The idea behind this
strategy is to obtain a controlled biomimetic profile that can increase the adhesion and
migration of endothelial cells onto the stent surface. In this respect, the pattern’s depths
must be in the sub-micron range to avoid unwanted platelet adhesion [175]. Various
surface treatments can be applied to the stent platforms to obtain smooth, contamination-
free surfaces, such as mechanical polishing, electropolishing, ultrasonic cleaning, chemical
etching and degreasing, and low-pressure plasma etching [136].

Endothelial adhesion and spreading can also be modified through physicochemical
changes. These can be performed by generating suitable functional groups and/or mod-
ulating surface energy [80]. For this purpose, oxides and nitrides of metals can be used.
Alternatively, metals and polymers can be deposited through various physicochemical
techniques, including magnetron sputtering, pulsed laser deposition, and matrix-assisted
pulsed laser evaporation. Another example of chemical surface modification of stents is
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the molecular layer deposition of silanes, which are compounds rich in useful functional
groups [31].

Another category of surface modifications is biofunctionalization, which refers to the
surface immobilization of biomolecules with specific biological properties while the original
mechanical properties of the material remain unchanged [76]. Cell–material interactions
can be improved by using biomacromolecules (e.g., heparin, fucoidan, chondroitin sulfate,
hyaluronic acid, antioxidant compounds, or collagen) that facilitate a cascade of events
beneficial for regenerating the damaged area with a functional endothelium [80,174].

Surface heparinization is one of the most common histocompatibility-enhancing
methods. This is due to heparin’s useful effects in preventing intimal hyperplasia and
inhibiting smooth-muscle cell proliferation and migration. The negative charge of heparin,
conferred by its many sulfo and carboxyl groups, mediates the interactions with enzymes,
esterase inhibitors, protease, chemokines, and growth factors [76,176].

Another solution is the use of a CD31-mimetic peptide to favor vascular homeostasis
and arterial wall healing. Such a surface functionalization has been proven to be successful:
one week after implantation, CD31-mimetic struts were reportedly fully endothelialized
with no activated platelets/leukocytes, while four weeks after stenting a significant reduc-
tion in neointima development was noticed compared to bare-metal stents [177].

The application of coatings also fits under the broad umbrella of surface modifications.
The development of coating materials and designs that facilitate drug delivery while main-
taining suitable biological properties is an intense field of research. Of particular interest
are multifunctional coatings that synergistically combine features, such as modification of
the bulk material’s degradation rate, reduction of the risk of thrombosis, acceleration of the
proliferation of endothelial cells, or even endowment of the device with new functionalities.

One such development is available for magnesium-based stents, which can be im-
proved through alkali treatment followed by polydopamine and hyaluronic acid immo-
bilization via strong electrostatic adsorption and covalent bonding between the carboxyl
group of hyaluronic acid and the amine or hydroxyl groups of polydopamine. Hence,
a magnesium/OH/polydopamine/hyaluronic acid coating can be obtained, the opti-
mum biocompatibility–antithrombogenicity balance of which is achieved by adjusting the
hyaluronic acid content on the polydopamine surface [178].

Another innovative approach is the inclusion of biomarkers in the stent coating. In
this respect, researchers have proposed using CD146 as a distinctive target for selectively
capturing endothelial progenitor cells. The authors of one study immobilized these anti-
bodies on cobalt-chromium stents coated with silicone nanofilaments, resulting in superior
devices that accelerate re-endothelialization and prevent artery restenosis [179].

The current guidance technique for PCI is X-ray fluoroscopy, which, due to its poor
soft-tissue contrast and limitation to a single plane, hinders the precise navigation of
endovascular instruments. Safer and more accurate guidance can be achieved through
magnetic resonance imaging (MRI), but the availability of MRI-visible stents is limited.
One way to solve this problem is through the creation of superparamagnetic iron oxide
(SPIO)-functionalized devices that allow better control of stent deployment, subsequently
reducing the rate of implantation-associated complications. Such stents can be obtained by
incorporating SPIO nanoparticles in a biocompatible polymer (i.e., PLGA) that serves as a
multifunctional coating [180].

4. Future Perspectives

Currently, stents are mostly produced by laser cutting or other fabrication techniques,
like electrode discharge machining, waterjet cutting, photochemical etching from tubing,
and various wire-forming techniques, such as braiding and knitting [136,137]. However,
these technologies can be updated or replaced through advancements in augmented
reality (AR), 3D printing, and deep learning (DL) [19]. Specifically, by making use of the
information gathered about blood vessels through AR and DL, materials like PLA [156],
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polydiolcitrate [94], or metallic glasses [181] can be 3D printed into cardiovascular devices
with more distinct designs than commercially available ones [19,182–185].

The use of such technologies opens the door for patient-specific devices that can
meet each individual’s exact requirements. In this way, the challenges of immunogenicity,
inflammation, fibrous tissue formation, material degradation, and cytotoxicity can be
addressed by creating customized cardiovascular stents corresponding to the target blood
vessels’ physiological conditions and pathological status [19].

Furthermore, smart stents can be introduced instead of simple-support devices. Re-
searchers have proposed innovative implantable and biocompatible platforms that can
measure blood flow using miniaturized ultrasonic transducers. Such systems offer flexi-
bility as they can both transmit and receive information in a wireless manner. Therefore,
smart stents would be able to prevent restenosis while simultaneously monitoring post-
implantation outcomes on the spot [16].

Another future direction is the replacement of the traditional implantation procedure.
Considering the success of drug delivery through blood vessels enabled by a high-precision,
biocompatible, and 3D-printable micro-robot, the developers, from ETH Zurich, have
started to investigate micro-robots for stent deployment. Moreover, at the same university,
novel 4D printing technology has been introduced for the fabrication of cardiovascular
stents with dimensions 40 times smaller than currently existing ones [13].

5. Conclusions

To summarize, cardiovascular diseases pose a severe threat to a large part of the global
population, affecting both life quality and duration. Particularly, arterial stenosis caused
by plaque deposition stands behind an aggravating cascade of events.

Each step of the technological progress in intracoronary stents has influenced per-
cutaneous coronary intervention by improving its outcomes in both the short and long
terms. Drug-eluting stents have become a standard of care in PCI, as contemporary DES
platforms incorporate significant advances in scaffold design, polymer compatibility, and
antiproliferative drug delivery. Moreover, bioresorbable stents have recently emerged as
a convenient solution where permanent stents are required, as their degradation make it
possible to avoid undesired long-term effects.

However, challenges can still arise and there are still individuals suffering from
stenting failure, thrombosis, or restenosis, regardless of the excellent safety and efficacy
of the newest devices compared to predecessor generations. Therefore, new materials
for both stent platforms and polymer coatings must be investigated and better stent
designs developed.

To conclude, despite being used for decades, stents still have considerable research
potential. Stent optimization should be achieved in all the involved stages, from the
design, choice of materials, and fabrication method to the surface functionalization and
implantation procedure.
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